Dissipation and resonance frequency shift of a resonator magnetically coupled to a semiclassical spin

نویسندگان

  • J. M. de Voogd
  • J. J. T. Wagenaar
  • T. H. Oosterkamp
چکیده

We calculate the change of the properties of a resonator, when coupled to a semiclassical spin by means of the magnetic field. Starting with the Lagrangian of the complete system, we provide an analytical expression for the linear response function for the motion in the case of a mechanical resonator and the current for the case of an electromagnetic resonator, thereby considering the influence of the resonator on the spin and vice versa. This analysis shows that the resonance frequency and effective dissipation factor can change significantly due to the relaxation times of the spin. We first derive this for a system consisting of a spin and mechanical resonator and thereafter apply the same calculations to an electromagnetic resonator. Moreover, the applicability of the method is generalized to a resonator coupled to two-level systems and more, providing a key to understand some of the problems of two-level systems in quantum devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and performance analysis of a seismic grade resonance nano accelerometer

In this paper, design and performance analysis of a resonance nanosensor for earthquake low frequency geoacoustic waves detection is proposed. The model comprises of a proof mass suspended to the substrate, and a nanobeam attached to the intersection of the proof mass to the substrate. The nanobeam could be cosidered as a clamped-clamped nanoresonator actuated electrostartically. The induced ac...

متن کامل

Resonator-induced dissipation of transverse nuclear-spin signals in cold nanoscale samples

The back action of typical macroscopic resonators used for detecting nuclear magnetic resonance can cause a reversible decay of the signal, known as radiation damping. A mechanical resonator that is strongly coupled to a microscopic sample can in addition induce an irreversible dissipation of the nuclear-spin signal, distinct from radiation damping. We provide a theoretical description of reson...

متن کامل

External control of dissipation in a nanometer-scale radiofrequency mechanical resonator

We demonstrate a technique by which the quality factor of a magnetically-actuated mechanical resonator is controlled by an external electrical circuit. Modulation of this parameter is achieved by local variation of the electrical impedance presented to the resonator at its resonance frequency. We describe a theory that explains this result as arising from eddy currents in the external electrica...

متن کامل

Measuring the state of a single-molecule magnet with a microstrip resonator

In this work, measurement of the single-molecule magnet (SMM) spin state using a microstrip resonator is considered theoretically. An analysis of the SMM spin dynamics and the interaction between the microstrip and the SMM is presented. The interaction of the SMM with the microstrip causes a shift of the microstrip resonance frequency. An analytic expression for the maximum frequency shift is d...

متن کامل

Design and Fabrication of a Quartz Crystal Resonator Used in a Thickness-Monitor Unit (TECHNICAL NOTES).

This paper deals with the design and fabrication of a quartz-crystal resonator used in a thickness-monitor unit, measuring film thickness in a film-depositing system. A purpose-grown quartz crystal is cut to form the desired wafer. Two gold electrodes are deposited on both surfaces of the wafer to provide electrical contacts. The resonance frequency of the resonator, at room temperature, and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017